1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ по Алгебре 10-11 Класс Учебник 📕 Алимов — Все Части
Алгебра
10-11 класс учебник Алимов
10 класс
Тип
ГДЗ, Решебник.
Автор
Ш.А. Алимов, Ю.М. Колягин, М.В. Ткачева.
Год
2015-2024.
Издательство
Просвещение.
Описание

ГДЗ по Алгебре 10-11 Класс Номер 1065 Алимов — Подробные Ответы

Задача

Найти значение выражения:

  1. 26!/25!;
  2. 32!/31!;
  3. 12!/10!;
  4. 14!/12!;
  5. 5!*3!/7!;
  6. 6!*4!/8!;
  7. 10!/8!*3!;
  8. 1!/9!*2!.
Краткий ответ:
  1. 26!25!=2625!25!=26\frac{26!}{25!} = \frac{26 \cdot 25!}{25!} = 26;
  2. 32!31!=3231!31!=32\frac{32!}{31!} = \frac{32 \cdot 31!}{31!} = 32;
  3. 12!10!=121110!10!=1211=132\frac{12!}{10!} = \frac{12 \cdot 11 \cdot 10!}{10!} = 12 \cdot 11 = 132;
  4. 14!12!=141312!12!=1413=182\frac{14!}{12!} = \frac{14 \cdot 13 \cdot 12!}{12!} = 14 \cdot 13 = 182;
  5. 5!3!7!=5!32765!=676=17\frac{5! \cdot 3!}{7!} = \frac{5! \cdot 3 \cdot 2}{7 \cdot 6 \cdot 5!} = \frac{6}{7 \cdot 6} = \frac{1}{7};
  6. 6!4!8!=6!432876!=8387=37\frac{6! \cdot 4!}{8!} = \frac{6! \cdot 4 \cdot 3 \cdot 2}{8 \cdot 7 \cdot 6!} = \frac{8 \cdot 3}{8 \cdot 7} = \frac{3}{7};
  7. 10!8!3!=1098!8!32=53=15\frac{10!}{8! \cdot 3!} = \frac{10 \cdot 9 \cdot 8!}{8! \cdot 3 \cdot 2} = 5 \cdot 3 = 15;
  8. 11!9!2!=11109!9!2=115=55\frac{11!}{9! \cdot 2!} = \frac{11 \cdot 10 \cdot 9!}{9! \cdot 2} = 11 \cdot 5 = 55
Подробный ответ:

1) 26!25!\frac{26!}{25!}

Шаг 1. Раскроем факториалы.
Мы знаем, что факториал n!n! — это произведение всех целых чисел от 1 до nn. Таким образом:

26!=2625!26! = 26 \cdot 25!

Шаг 2. Подставим это в исходное выражение.
Теперь подставим это в наше выражение:

26!25!=2625!25!\frac{26!}{25!} = \frac{26 \cdot 25!}{25!}

Шаг 3. Сократим одинаковые множители.
Мы видим, что в числителе и знаменателе есть одинаковый множитель 25!25!, который можно сократить:

2625!25!=26\frac{26 \cdot 25!}{25!} = 26

Ответ: 2626.

2) 32!31!\frac{32!}{31!}

Шаг 1. Раскроем факториалы.
По аналогии с первым примером, 32!32! раскладывается как:

32!=3231!32! = 32 \cdot 31!

Шаг 2. Подставим это в выражение.
Теперь подставим это в исходное выражение:

32!31!=3231!31!\frac{32!}{31!} = \frac{32 \cdot 31!}{31!}

Шаг 3. Сократим одинаковые множители.
Как и в предыдущем случае, 31!31! можно сократить:

3231!31!=32\frac{32 \cdot 31!}{31!} = 32

Ответ: 3232.

3) 12!10!\frac{12!}{10!}

Шаг 1. Раскроем факториалы.
12!12! можно записать как:

12!=121110!12! = 12 \cdot 11 \cdot 10!

Шаг 2. Подставим это в выражение.
Теперь подставим это в исходное выражение:

12!10!=121110!10!\frac{12!}{10!} = \frac{12 \cdot 11 \cdot 10!}{10!}

Шаг 3. Сократим одинаковые множители.
Сократим 10!10! в числителе и знаменателе:

121110!10!=1211\frac{12 \cdot 11 \cdot 10!}{10!} = 12 \cdot 11

Шаг 4. Выполним умножение.

1211=13212 \cdot 11 = 132

Ответ: 132132.

4) 14!12!\frac{14!}{12!}

Шаг 1. Раскроем факториалы.
14!14! можно записать как:

14!=141312!14! = 14 \cdot 13 \cdot 12!

Шаг 2. Подставим это в выражение.
Подставляем в исходное выражение:

14!12!=141312!12!\frac{14!}{12!} = \frac{14 \cdot 13 \cdot 12!}{12!}

Шаг 3. Сократим одинаковые множители.
Сократим 12!12! в числителе и знаменателе:

141312!12!=1413\frac{14 \cdot 13 \cdot 12!}{12!} = 14 \cdot 13

Шаг 4. Выполним умножение.

1413=18214 \cdot 13 = 182

Ответ: 182182.

5) 5!3!7!\frac{5! \cdot 3!}{7!}

Шаг 1. Раскроем факториалы.
Вычислим каждый факториал:

5!=54321=120

5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120 3!=321=6

3! = 3 \cdot 2 \cdot 1 = 6 7!=7654321=50407! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5040

Шаг 2. Подставим эти значения в выражение.

5!3!7!=12065040\frac{5! \cdot 3!}{7!} = \frac{120 \cdot 6}{5040}

Шаг 3. Упростим выражение.
Выполним умножение в числителе:

1206=720120 \cdot 6 = 720

Теперь выражение выглядит так:

7205040\frac{720}{5040}

Шаг 4. Упростим дробь.
Сократим числитель и знаменатель на 720:

7205040=17\frac{720}{5040} = \frac{1}{7}

Ответ: 17\frac{1}{7}.

6) 6!4!8!\frac{6! \cdot 4!}{8!}

Шаг 1. Раскроем факториалы.
Вычислим каждый факториал:

6!=654321=720

6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720 4!=4321=24

4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 8!=87654321=403208! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40320

Шаг 2. Подставим эти значения в выражение.

6!4!8!=7202440320\frac{6! \cdot 4!}{8!} = \frac{720 \cdot 24}{40320}

Шаг 3. Упростим выражение.
Выполним умножение в числителе:

72024=17280720 \cdot 24 = 17280

Теперь выражение выглядит так:

1728040320\frac{17280}{40320}

Шаг 4. Упростим дробь.
Сократим числитель и знаменатель на 17280:

1728040320=37\frac{17280}{40320} = \frac{3}{7}

Ответ: 37\frac{3}{7}.

7) 10!8!3!\frac{10!}{8! \cdot 3!}

Шаг 1. Раскроем факториалы.
Вычислим каждый факториал:

10!=1098!=3628800

10! = 10 \cdot 9 \cdot 8! = 3628800 8!=87654321=40320

8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40320 3!=321=63! = 3 \cdot 2 \cdot 1 = 6

Шаг 2. Подставим эти значения в выражение.

10!8!3!=1098!8!3!\frac{10!}{8! \cdot 3!} = \frac{10 \cdot 9 \cdot 8!}{8! \cdot 3!}

Шаг 3. Сократим одинаковые множители.
Сократим 8!8! в числителе и знаменателе:

1098!8!3!=1093!\frac{10 \cdot 9 \cdot 8!}{8! \cdot 3!} = \frac{10 \cdot 9}{3!}

Теперь подставим 3!=63! = 6:

1096=906=15\frac{10 \cdot 9}{6} = \frac{90}{6} = 15

Ответ: 1515.

8) 11!9!2!\frac{11!}{9! \cdot 2!}

Шаг 1. Раскроем факториалы.
Вычислим каждый факториал:

11!=11109!

11! = 11 \cdot 10 \cdot 9! 9!=987654321=362880

9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 362880 2!=21=22! = 2 \cdot 1 = 2

Шаг 2. Подставим эти значения в выражение.

11!9!2!=11109!9!2!\frac{11!}{9! \cdot 2!} = \frac{11 \cdot 10 \cdot 9!}{9! \cdot 2!}

Шаг 3. Сократим одинаковые множители.
Сократим 9!9! в числителе и знаменателе:

11109!9!2!=11102!\frac{11 \cdot 10 \cdot 9!}{9! \cdot 2!} = \frac{11 \cdot 10}{2!}

Теперь подставим 2!=22! = 2:

11102=1102=55\frac{11 \cdot 10}{2} = \frac{110}{2} = 55

Ответ: 5555.

Итоговые ответы:

  1. 2626
  2. 3232
  3. 132132
  4. 182182
  5. 17\frac{1}{7}
  6. 37\frac{3}{7}
  7. 1515
  8. 5555


Общая оценка
4.5 / 5
Комментарии
Другие предметы
Алгебра
10-10 класс