Учебник «Алгебра» для 10-11 классов под авторством Алимова – это один из наиболее популярных и широко используемых учебных пособий для старшеклассников. Он заслужил признание как среди учителей, так и среди учеников благодаря своей структурированности, доступности изложения и качественной проработке материала.
Учебник охватывает весь необходимый курс алгебры для 10-11 классов, включая такие сложные темы, как производные, интегралы, логарифмы и элементы математического анализа. Материал представлен последовательно и логично, что позволяет ученикам постепенно углубляться в изучение предмета. Пособие включает как теоретическую часть, так и большое количество практических заданий различного уровня сложности, что способствует закреплению знаний.
Одной из главных особенностей учебника является наличие задач повышенной сложности, которые стимулируют развитие логического мышления и навыков решения нестандартных задач. Кроме того, в книге представлены примеры из реальной жизни, что делает изучение алгебры более интересным и прикладным.
Преимущества учебника
- Четкая структура материала
Учебник разделен на главы и параграфы с последовательным изложением тем. Это позволяет ученикам легко ориентироваться в содержании и возвращаться к ранее изученным темам для повторения. - Пошаговые объяснения
Каждая новая тема сопровождается подробными примерами с пошаговым решением. Это помогает ученикам лучше понять алгоритмы выполнения задач. - Разнообразие упражнений
В учебнике представлены задачи разного уровня сложности: от базовых до олимпиадных. Это делает пособие полезным как для обычных школьников, так и для тех, кто готовится к экзаменам или олимпиадам. - Практическая направленность
Включение задач из реальной жизни (например, расчет процентов или использование математических моделей) помогает ученикам видеть практическое применение алгебры. - Подготовка к ЕГЭ
Учебник содержит задания, аналогичные тем, которые встречаются на ЕГЭ, что делает его отличным инструментом для подготовки к экзаменам.
Учебник «Алгебра» Алимова для 10-11 классов – это надежный помощник в изучении математики. Он подходит как для базового освоения предмета, так и для углубленного изучения. Благодаря четкой структуре, разнообразию заданий и ориентации на экзамены, данный учебник является одним из лучших выборов для старшеклассников.
ГДЗ по Алгебре 10-11 Класс Номер 990 Алимов — Подробные Ответы
- (x+4)4;
- (x-2)3;
- 2/корень (x-2);
- 3/ корень 3 степени (x+3);
- 1/(x-1) + 4cos(x+2);
- 3/(x-3) — 2sin(x-1).
- ;
; - ;
; - ;
; - ;
; - ;
;
; - ;
;
Задача 1:
Дано:
Нужно найти первообразную .
Решение:
Для нахождения первообразной функции , применим стандартное правило интегрирования для степенной функции:
Интеграл от равен , при .
В данном случае и .
Интегрируем :
Таким образом, первообразная будет:
где — произвольная константа интегрирования.
Ответ: .
Задача 2:
Дано:
Нужно найти первообразную .
Решение:
Используем стандартное правило интегрирования для степенных функций:
Интегрируем :
Таким образом, первообразная будет:
где — произвольная константа интегрирования.
Ответ: .
Задача 3:
Дано:
Нужно найти первообразную .
Решение:
Используем правило интегрирования для степенных функций:
Интеграл от равен , где .
В данном случае .
Интегрируем :
Таким образом, первообразная будет:
где — произвольная константа интегрирования.
Ответ: .
Задача 4:
Дано:
Нужно найти первообразную .
Решение:
Используем правило интегрирования для степенных функций:
Интеграл от равен , где .
В данном случае .
Интегрируем :
Таким образом, первообразная будет:
где — произвольная константа интегрирования.
Ответ: .
Задача 5:
Дано:
Нужно найти первообразную .
Решение:
Используем стандартные правила интегрирования:
Интегрируем :
Интегрируем :
Таким образом, первообразная будет:
где — произвольная константа интегрирования.
Ответ: .
Задача 6:
Дано:
Нужно найти первообразную .
Решение:
Используем стандартные правила интегрирования:
Интегрируем :
Интегрируем :
Таким образом, первообразная будет:
где — произвольная константа интегрирования.
Ответ: .
Задачи для внеклассной работы