Учебник «Алгебра» для 10-11 классов под авторством Алимова – это один из наиболее популярных и широко используемых учебных пособий для старшеклассников. Он заслужил признание как среди учителей, так и среди учеников благодаря своей структурированности, доступности изложения и качественной проработке материала.
ГДЗ по Алгебре 10-11 Класс Номер 6 Алимов — Подробные Ответы
- 16,9;
- 7,25(4);
- 1,21221222… (после n-й единицы стоит n- двоек);
- 99,1357911… (после запятой записаны подряд все нечётные числа)?
Анализ данных чисел:
1. 16,9
- Это конечная десятичная дробь ( ), то есть рациональное число.
2. 7,25(4)
- Десятичная запись 7,254444… является периодической, следовательно, число рациональное.
3. 1,21221222… (после n-й единицы стоит n двоек)
- Дробь не является периодической, так как структура записи не повторяется регулярно.
- Следовательно, число иррациональное.
4. 99,1357911… (после запятой записаны подряд все нечётные числа)
- Последовательность цифр после запятой не является периодической, следовательно, число иррациональное.
Ответ:
Иррациональные числа:
✅ 1,21221222…
✅ 99,1357911…
Рациональные числа:
❌ 16,9
❌ 7,25(4)
Рассмотрим каждое число и определим, является ли оно рациональным (представимым в виде дроби , где и — целые числа, ) или иррациональным (имеющим бесконечную непериодическую десятичную запись).
1) Число 16,9
Анализ:
Это конечная десятичная дробь, так как у неё только один знак после запятой. Любую конечную десятичную дробь можно записать в виде обыкновенной дроби:
Число представимо в виде дроби с целыми числителем и знаменателем.
Вывод: ✅ Рациональное число.
2) Число 7,25(4)
Анализ:
Запись означает бесконечную периодическую десятичную дробь:
Любую периодическую дробь можно записать в виде обыкновенной дроби.
Преобразуем в обыкновенную дробь:
Обозначим число за :
Умножим обе части на 10, чтобы перенести запятую на одну цифру вправо:
Умножим ещё раз на 10, чтобы отделить периодическую часть:
Вычтем из второго уравнения первое:
Представим 652,9 как дробь:
Дробь сокращается:
Вывод: ✅ Рациональное число.
3) Число 1,21221222… (после n-й единицы стоит n двоек)
Анализ:
Десятичная запись:
Видно, что структура десятичных знаков не повторяется строго: после первой единицы идёт одна двойка, затем после второй единицы — две двойки, затем три двойки и т. д. Это означает, что число не является периодическим.
Вывод: ✅ Иррациональное число.
4) Число 99,1357911… (после запятой записаны подряд все нечётные числа)
Анализ:
Запись:
Последовательность цифр после запятой состоит из всех нечётных чисел, записанных подряд, без какого-либо регулярного повторения. Так как дробь не имеет периодической структуры, её нельзя представить в виде обыкновенной дроби.
Вывод: ✅ Иррациональное число.
Итоговый ответ:
✅ Иррациональные числа:
- 1,21221222…
- 99,1357911…
✅ Рациональные числа:
- 16,9
- 7,25(4)