Краткий ответ:
;
Выражение имеет смысл при:
Ответ: .
;
Выражение имеет смысл при:
Ответ: .
Подробный ответ:
1)
Шаг 1: Область определения (ОДЗ)
У логарифма основание , но всё ещё — логарифм существует.
Также выражение под логарифмом обязательно положительно:
Шаг 2: Преобразуем правую часть неравенства
Запишем число как логарифм по основанию :
Значит:
Шаг 3: Учитываем свойства логарифма с основанием меньше 1
Функция , где , является убывающей, поэтому при сравнении логарифмов знак неравенства меняется на противоположный:
Шаг 4: Решаем простое линейное неравенство
Шаг 5: Объединяем с ОДЗ
- ОДЗ:
- Решение:
Ответ:
2)
Шаг 1: Область определения
Выражение под логарифмом должно быть положительно:
Шаг 2: Преобразуем правую часть
Представим как логарифм по основанию 3:
Получаем:
Шаг 3: Основание — функция возрастает
Значит, знак неравенства сохраняется:
Шаг 4: Решаем линейное неравенство
Шаг 5: Объединяем с ОДЗ
- ОДЗ:
- Решение:
Ответ:
Итог: