Учебник «Алгебра» для 10-11 классов под авторством Алимова – это один из наиболее популярных и широко используемых учебных пособий для старшеклассников. Он заслужил признание как среди учителей, так и среди учеников благодаря своей структурированности, доступности изложения и качественной проработке материала.
ГДЗ по Алгебре 10-11 Класс Номер 1234 Алимов — Подробные Ответы
Цена товара была снижена сначала на 24%, а затем на 50% от новой цены. Найти общий процент снижения цены товара.
Пусть — первоначальная цена товара, тогда:
Цена товара после первого снижения на 25%:
Цена товара после последующего снижения на 50%:
Отношение конечной цены к начальной:
Снижение цены в процентах:
Ответ: на 62%.
- Цена товара была снижена сначала на 24%, а затем на 50% от новой цены.
- Нужно найти общий процент снижения цены товара.
Шаг 1: Обозначение начальной цены товара
Пусть первоначальная цена товара равна .
Шаг 2: Снижение цены на 24%
После первого снижения на 24% цена товара уменьшится на 24% от его первоначальной стоимости. Чтобы найти новую цену , можно записать следующее:
Таким образом, после первого снижения цена товара составляет , или 76% от начальной цены.
Шаг 3: Снижение цены на 50% от новой цены
Теперь товар подлежит второму снижению — на 50% от новой цены, которая после первого снижения составляет .
После второго снижения цена товара уменьшится на 50% от . Для вычисления новой цены после второго снижения, пишем:
Таким образом, после второго снижения цена товара составит:
Шаг 4: Отношение конечной цены к начальной
Теперь найдем отношение конечной цены к начальной цене :
Таким образом, конечная цена составляет от начальной цены.
Шаг 5: Вычисление общего процента снижения
Чтобы найти общий процент снижения цены, нужно вычислить, насколько уменьшилась цена товара по сравнению с первоначальной. Для этого из 1 (или 100%) вычитаем отношение конечной цены к начальной:
Теперь вычислим:
Шаг 6: Ответ
Таким образом, общий процент снижения цены товара составляет:
Дополнительные пояснения:
- Мы начали с вычисления нового значения цены после каждого снижения, используя понятие процента (умножение на дробь).
- Рассчитав, насколько цена товара уменьшилась по сравнению с первоначальной, мы нашли, что итоговое снижение составило 62%.